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Abstract

Autonomous estimation of the altitude of an Unmanned Aerial Vehicle (UAV) is extremely
important when dealing with flight maneuvers like landing, steady flight, etc. Vision based
techniques for solving this problem have been underutilized. In this thesis, we propose a new
algorithm to estimate the altitude of a UAV from top-down aerial images taken from a single
on-board camera. We use a semi-supervised machine learning approach to solve the problem.
The basic idea of our technique is to learn the mapping between the texture information
contained in an image to a possible altitude value. We learn an over complete sparse basis
set from a corpus of unlabeled images capturing the texture variations. This is followed
by regression of this basis set against a training set of altitudes. Finally, a spatio-temporal
Markov Random Field is modeled over the altitudes in test images, which is maximized
over the posterior distribution using the MAP estimate by solving a quadratic optimization
problem with L1 regularity constraints. The method is evaluated in a laboratory setting with
a real helicopter and is found to provide promising results with sufficiently fast turnaround
time.
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1 Introduction

Unmanned Aerial Vehicles (UAVs) have been an active area of research in the recent years.
UAVs have been found to be an ideal platform for a number of civilian and military tasks
like visual surveillance, inspection, firefighting, policing civil disturbances or reconnaissance
support in natural disasters. The ability of UAVs to fly at low speeds, hover or fly laterally
and perform maneuvers in narrow spaces facilitate them for these tasks. One of the most
important tasks in achieving UAV autonomy is autonomous navigation, which needs good
altitude estimation techniques. The main surge in mini-UAV designs these days have been
on optimizing and miniaturizing the hardware and putting multiple functionalities into
the same device. On-board cameras are indispensible components of a UAV, enabling it
for environment monitoring, tracking etc. Compared to other sensors, (e.g. laser), video
cameras are quite light and less power hungry. In this thesis, we investigate the idea of
estimating the altitude of a UAV from the images taken from a single on board camera
using machine learning techniques.

Vision based control of an autonomous helicopter has been investigated quite thoroughly
in the previous years. Different camera systems and arrangements have been tried. A
downward-looking camera with a standard lens has been investigated in [11], [4], [15], but
the state estimation of their approach is relative to the specifics of a given landing pad.
In [9], a multi view geometry based approach to build a digital map of the ground is
suggested. They use aerial image sequences taken from a side looking helicopter camera,
with the assumption that there are uniquely recognizable features in the vicinity of the
UAV to correlate the images in the sequence. An application of omni directional cameras
for vision based navigation is described in [14], but the environment over which this is
used seems very restrictive. A reinforcement learning strategy for performing various flight
maneuvers have been investigated in [10], but they do not use any vision based techniques.

To the best of our knowledge, this is the first time that the problem of altitude estimation
of a UAV has been studied exclusively and a machine learning framework being suggested.
The motivation for this research stems from the recent developments in the area of 3D
reconstruction using monocular cues. In [2], [1] and [3] Saxena et. al. proposes an algorithm
for building a depth map from a single image. The algorithm uses a Markov Random Field
(MRF) based supervised learning to build a model of the variation of depth at each pixel
in a given image against a set of feature vectors computed from those pixels. But we
found that their method cannot be applied to our problem due to the following reasons:
(i) we have top-down aerial views, (ii) there is little structure compared to images taken
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on ground and (iii) we assume that the ground plane is flat; thus needing to compute
only a single altitude from the entire image. We also assume that the UAV does not
make sudden changes in altitude such that the deviation of altitude from one image to its
preceding images is smooth. We incorporate this information also into our model to refine
the predicted altitude. To account for issue (ii), we suggest a semi-supervised learning
method for learning a sparse overcomplete basis from a corpus of possible terrain images.
This is in lines of the Self-Taught Learning strategy proposed in [12]. Self-taught learning is
a kind of transfer learning which is based on the assumption that any image consists of some
basic ingredients like edges, textures, etc and thus learning a sparse overcomplete bases over
a random set of images provide a powerful representation system to model any given image
as a sparse linear combination of these bases. But our approach is not transfer learning
and we use only aerial images of terrains where the UAV will fly. Later, we do supervised
regression over this basis using the altitudes we have from a given training set. Finally, we
introduce a novel spatio-temporal MRF model to estimate the altitude of a patch in the
image to the altitude of other patches in the same image and patches across images in the
earlier time frames. The MRF model is later solved for the Maximum A Posteriori (MAP)
estimate of the altitude.

The rest of the document is organized as follows: We begin with an overview of our
motivation for using texture based techniques for altitude estimation in Chapter 2, which
precedes a discussion on computing the feature vectors. In Chapter 3, we propose a proba-
bility model for the problem and optimization techniques for solving it. Chapter 4 discusses
our experiments and we conclude in Chapter 5.
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2 Feature Vector

Given a video of altitude variations taken using a fixed focal length moving camera, humans
will not have much of a difficulty in inferring the altitudes across frames. For example, we
can easily say if an image was taken too close to the ground or far away or how much is
the relative difference in altitudes between two given images. This is not only attributed
to our prior knowledge about the environment, but also to our capability for using monoc-
ular cues such as texture variations, known object sizes, haze, focus/de-focus, etc in the
inference. Texture gradients capture the distribution of the direction of the edges. It is a
valuable source of depth cues and has been used quite effectively in papers like [2], [1] for
3D reconstruction.

When dealing with aerial images taken from a UAV, we have to face some more issues
that cannot be adequately captured by texture variations alone. For example, most of
the images are too noisy, have a variety of illumination differences, or are often blurred
by the motion of the UAV. Moreover, aerial images lack structure compared to images
taken on ground. For example, in ground images, we can probably assume that there is a
ground plane, all objects stand on the ground, etc. But aerial images with top-down views
look like random patches and application of conventional filters like autocorrelation filters,
fourier/wavelets based filters, texture gradient filters like Nevatia-Babu, Laws masks filters,
etc cannot effectively capture the texture variations to the respective altitude variations.
Fig. 1 shows a few sample images that we will be working with in this thesis. They were
taken in our laboratory setting and the altitude at which each image was taken is also
mentioned. Note the variation in texture as the altitude increases.

The motivation for our approach to solve this problem stems from the recent develop-
ments in sparse coding for compressed sensing [5], where information is encoded using a
sparse overcomplete basis which effectively captures higher level information in the data,
leading to a close to perfect reconstruction. The method was found to be robust to noise
and relatively immune to illumination variations. In sparse coding, only a very few vectors
from the basis set are needed to reconstruct a given image patch. Thus, a regression of
this active set against altitudes provide a good representative relationship between altitude
variations against the texture differences. Also, we would like to reduce the computational
time for feature extraction and at the same time not compromising on the generality of the
representation. We felt, conventional approaches using filter banks might not adhere to this
requirement. For example, in [2], a filter bank of 510 dimensions is suggested. This increases
the feature extraction time as well as the altitude prediction time. Fast turn-around time
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Figure 1: Sample images of the top-down aerial views from an onboard camera of a UAV
in the laboratory setting. The altitude at which each subimage was taken is also shown.

is a critical aspect in our application.
In [12], an efficient framework for learning such a sparse overcomplete basis is suggested,

which is later used for object classification. Our problem is different from their approach,
in that we do not learn basis from completely random images, but from aerial images of
various terrains. Thus our philosophy is closer to a semi-supervised learning [17] setting,
although we use their model to learn the basis. In order to prove the generality of our
approach to arbitrary scenarios, we used random aerial images of various terrains from the
internet to build our basis set. A few sample images that we used for this purpose are
shown in Fig. 2.

Figure 2: Random aerial images downloaded from the internet for learning the basis set.

Given a large corpus of image patches I = {I1, ..., IN}, each patch is vectorized as a
k dimensional input vector y. The goal of sparse coding is to represent these vectors as
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a sparse approximate weighted linear combination of n basis vectors. That is, for the ith

input vector yi ε Rk ,

yi ≈
n∑
j=1

bja
i
j = Bai (1)

where b1, b2, ..., bn ε Rk are the basis vectors and ai ε Rn is a sparse vector of coefficients.
Unlike similar methods such as PCA, the basis set B that we use here can be overcomplete
(n > k), and can represent nonlinear features of y. To find the optimal B and ai’s, we solve
the following optimization problem as formulated by [12]:

min
b,a

∑
i

‖yi −
∑
j

aijbj‖22 + β‖ai‖1 (2)

s.t. ‖bj‖2 ≤ 1, ∀ j ε {1, ..., n}

The optimization objective of (2) balances two terms: (i) the first quadratic term en-
courages each input yi to be reconstructed well, as a weighted linear combination of the
basis bj with the corresponding weights given by the activations aij , and (ii) it encourages
the activations to have low L1 norm, which encourages ai to be sparse. The optimization
problem is convex over each subset of variables a and b, but is not jointly convex. More
specifically, the problem on activations a is an L1 constrained least squares problem, where
as the one on the basis b is an L2 regularized least squares problem. The paper [7] provides
an algorithm to solve these two sub-problems efficiently. Fig. 3 shows a basis set learnt
using the above algorithm using random aerial images downloaded from the internet.

Once a sparse basis set B ε <k×n is obtained, we can construct a feature vector f for
a given vectorized image patch p of dimension k by computing the activations on the basis
that will produce this patch. That is,

min
f
‖p−

∑
j

fjbj‖22 + β‖f‖1 (3)

The feature vectors f from all the patches p in a given image are stacked up to form the
feature vector set F that is used in the following sections.
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Figure 3: 350 basis vectors each of size 16x16 learned using 50000 patches from random
internet aerial images.
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3 Inference Model

Now that we have a comprehensive representation of the texture of an image as a linear
combination of the basis, a supervised learning algorithm modeled on a spatio-temporal
Gaussian Markov Random Field (MRF) [13] is deployed to estimate the posterior distribu-
tion of the altitude for every pixel block in the image. We model the posterior distribution
of altitude d given the feature vectors set F and parameters σ and θ as:

P (d|F ;σ, θ) =
1
Z
exp(−Eσ,θ(d, F )) (4)

where

Eσ,θ(d, F ) =
n∑
i=1

(di − F ′iθ)2

σ2
a

+
T∑
j=1

n∑
i=1

(dit−j − di)2

σ2
j

+β
n∑
i=1

n∑
j=1,j 6=i

|di − dj | (5)

Here, Z is a normalization constant, Eσ,θ(d, F ) defines the Gibbs energy function and
Fi is the feature vector at pixel block i of the image computed using (3). The first term in
(5) models the raw altitude at the pixel block i in terms of feature vectors Fi through the
regressor θ. As it is apparent, we use a linear relationship between Fi and d. Linear least
squares regression over the training set is used to find the vector θ.

We assume that the altitude of the UAV will not change abruptly, but rather smoothly.
Thus the altitude predicted from one image frame to the next frame should not have drastic
deviations in the predicted altitudes. This is formulated by the second term in (5), which
constrains the altitude at pixel block i at time t, to be smooth to the pixel block i of the
image frame at time t − j. The third term in Eq. (5) captures the relationship between
the altitude predicted at pixel block i to all other blocks in the same image. Since we are
working with aerial images with top-down view, and since we assume that the ground is
flat, there will be only a single altitude value for the whole image. Thus we would like to
constrain the altitudes predicted from different pixel blocks of one frame to be as equal as
possible. That is, if di and dj represent the altitudes at any two pixel blocks in the same
frame, then (di − dj) should be as close to zero as possible. Fig. 4 shows a schema of the
MRF setup we are assuming in our computations.

The parameter σa ensures smoothness of our raw predictions of altitude. From our
experiments, we found that there was heteroskedasticity in the data, i.e., the variance of
the prediction error varied with the texture of the image. In order to accomodate for
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Figure 4: The MRF model we assume. The schema represents the dependency of the
altitude at pixel block i to other pixel blocks as modeled by the spatio-temporal MRF. In
the schema we show frames at times t, t − 1,...,t − T . Each solid black dot dit shows the
altitude at patch i at time t. The solid lines show the equality constraints we impose for
the altitude predictions and dotted lines capture the smoothness across frames.

this variation, a separate σa parameter was estimated for each image by projecting the
individual feature vectors Fi in the image patches to a regression hyperplane S that captures
the expected error. That is, a hyperplane S is first estimated by linear least squares over
E[(di−Fiθ)2] = STFi from the training data. Later, given the feature vectors Fi from a test
image, we calculate σa = E[‖STFi‖], i.e. by averaging over the individual feature vectors
projected on to S.

A different strategy was used to find the σj parameters. These parameters capture the
variance of the altitude estimates across frames. We assume that the altitude variations are
smooth and also they are consistent across all the patches in a single image. We estimate
the hyperplane parameter Sj from the Eigen analysis of (di − dit−j), where di is the true
altitude from the training data and dit−j represents the estimated altitude of ith pixel block
at the jth earlier time step from the current step t. The covariance matrix is formed by
stacking up the predicted error across patches in a column and the variations across frames
in rows. Finally, σj = ‖STj dit−j‖ is computed. Note that in the Eigen analysis, we assume
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that the error in dit−j is Normal distributed and di = E(dit−j) for varying j. The parameter
β in the model controls how much the predicted altitudes in a frame di and dj are close and
is computed experimentally through cross validation.

Once the parameters are estimated from the training data, given a test frame, we use
the Maximum A Posteriori (MAP) over d to estimate the altitude d over the entire image.
The MAP problem can be stated as follows.

min
d

Eσ,θ(d, F ). (6)

To solve this problem, first (5) is reformulated as an L1 and L2 constrained optimization
problem through the following linear algebra transformations. Let D is an n×1 vector built
by stacking up all the altitude values d over the entire image. Let Y is also an n× 1 vector
created by stacking up the corresponding F ′iθ values. Further, let E and I be n2×n matrices
defined as follows:

E =


1n 0 0 0 0 0
0 1n 0 0 0 0
. . . . . .

. . . . . .

0 0 0 0 0 1n

 , I =



In×n

In×n

.

.

.

In×n


,

where 1n is a vector of n ones and In×n denotes an n×n identity matrix. Thus (6) in terms
of (5) can be rewritten as

min
D

‖D − Y )‖22
σ2
a

+
T∑
j=1

‖D −Dj‖22
σ2
j

+ β‖(E − I)D‖1 (7)

Assuming X = (E − I)D, this becomes a standard L1 and L2 constrained quadratic opti-
mization problem, which can be solved efficiently by a modified version of the Feature-Sign-
Search algorithm depicted in [7]. The basic idea of this algorithm is that if we can infer
the correct signs of the elements in the vector X, then the L1 minimization problem can
be converted to a standard L2 minimization problem which can be solved efficiently using
conventional optimization techniques.
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4 Experiments

4.1 UAV System

The experiments in this thesis were conducted in a laboratory setting using a Blade CX2
helicopter from E-Flite [8]. Fig. 5 shows the helicopter with the position and orientation of
the video camera. We used an Eyecam 2.4 GHz Color Micro Wireless Video Camera System
[6] onboard that captures NTSC video at 250K pixels and transmits it using a frequency
set in the 2.5 GHz spectrum. To track the position of the helicopter during test flights, 6
Vicon high-resolution MX-40 grayscale cameras [16] with a resolution of 2352× 1728 pixels
was deployed along the perimeter of the lab as shown in Fig. 6, giving an experimental area
of 4.5m× 4.5m× 2m. The Vicon cameras send information every 7ms through high speed
Ethernet cables to a central router, which collates the data, providing it to a PC running
the ViconIQ software recording the true altitude.

Figure 5: The Blade CX2 helicopter that was used for the experiments. It is a coaxial
helicopter with a rotor diameter of 34.5 cms, a height of 18.3 cms and weighs approximately
220g (with battery).
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Figure 6: The experimental setup for tracking the position of the helicopter. 6 high-
resolution Vicon cameras (only three shown in the picture) were placed along the perimeter
of the lab that tracks the reflective markers on the helicopter (seen with bright dots in the
picture) determining the position.

4.2 Learning Setup

To learn the basis set, we collected approximately 250 random aerial images (640×480) from
the internet. Each image was converted to gray scale, which preceds segregating the images
into patches of size 10× 10, vectorizing them, and later using (2) to build the basis. Fig. 7
shows the plot of the mean absolute error in altitude prediction against various choices of
the basis set size. Trading-off between the accuracy of altitude prediction (as seen from
Fig. 7) and the computational time, we fixed on 200 basis vectors for our experiments. The
parameters of the MRF model were then estimated by regressing the basis on patches from
a training set of 200 images taken using the camera on the helicopter. These images were of
the kind shown in Fig. 1. Finally the model was tested on pre-recorded lab flight sessions by
minimizing (7). Each test image in the video sequence was first applied with Wiener filters
to account for the motion blur and later convoluted with Gaussian filters for smoothing. To
improve the speed of prediction, we used only the middle 100× 100 section of each image.

4.3 Altitude Prediction

All the algorithms were implemented in Matlab. Testing the framework took less than 0.5
seconds per image on a PC with a 2Ghz Pentium processor and 2GB RAM. Fig. 8 plots
the true and predicted altitudes for various experimental UAV flight sessions. As is seen
from the plots, predicted altitude gives a very good approximation to the true altitude
most of the times. The prediction error increases as true altitude of the UAV goes high.
This is expected, as at higher altitudes, the ground is seen as almost textureless. Thus our
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Figure 7: A plot of the mean absolute error of prediction (y axis in m) against the number
of basis vectors used (x axis). Each basis vector is of size 100× 1.

algorithm is mostly applicable to low altitude situations, like landing or low altitude flight,
unless we have a more powerful camera onboard.

4.4 Robustness Evaluation

To evaluate the robustness of our algorithm with non-flat surfaces and across varying ground
textures, we placed boxes of varying textures in the experimental area and the helicopter
made to fly over them. Fig. 9 shows the results of this experiment. As is seen, our algorithm
performs well in finding the altitude variations due to the presence of the obstacles. We
repeated the experiments with boxes of high illumination and with non-textured surfaces,
the outputs of which are shown in Fig. 10. As expected, in this case, the algorithm gets
confused between textureless surfaces to textures at high altitudes and performs poorly.
A summary of the various experiments showing the minimum, maximum, mean and the
standard deviations of the errrors respectively is given in Table 1.

Experiment Minerror(m) Maxerror(m) Meanerror(m) Std.

Without boxes 0.0 1.13 0.35 0.26
With boxes 0.0 1.56 0.48 0.36

Table 1: A summary of the various flight experiments.
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Figure 8: Prediction of altitude for various flight sessions. The X axis shows the video frame
number and Y axis gives the altitude. The blue curve shows the true altitude, the black
curve shows the raw output using the linear prediction before MAP and red curve shows
the final output after the MAP estimation. The helicopter was made to fly up and down
which accounts for the variations in the blue curve.
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Figure 9: The prediction accuracy when there were altitude variations of the ground. We
kept a few boxes on the floor and the helicopter was made to fly over it. The plot shows
the true altitude of the helicopter (black) subtracting off the height of the boxes (whenever
it flew over it) and the predicted altitude (red). As is seen, our altitude prediction is very
close to the black curve most of the times.
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Figure 10: Predition accuracy for illumination (former) and non textured surfaces. The plot
shows the true altitude of the helicopter from the boxes (blue) and the predicted altitude
(red). Note the spikes in the predicted altitude where the algorithm gets confused with non-
textured surfaces and high altitude surfaces. The spikes appear at positions when actually
the helicopter gets closer to the boxes.
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5 Conclusion and Discussion

In this thesis, we investigated the possibility of predicting the altitude of a UAV from
ground looking image sequences taken from a single onboard camera in an indoor setting.
We found that sparse coding can effectively capture the texture in an image. Supervised
regression using this sparse basis against a training set of altitudes provided a good pre-
diction setup. Later, a spatio-temporal MRF was modeled and its MAP estimate with
respect to the altitude was computed. The effectiveness of our approach was substantiated
through laboratory experiments. We found that as the altitude of the UAV goes over a
certain height, the images become textureless (which depends on the specific environment
though) and our algorithm performs poorly. Thus our mechanism is most suited for situ-
ations where the UAV flies at low altitudes and at low speeds. Also, since the prediction
is based on the texture variations in the image, the mechanism performs poorly when the
ground surface is textureless. A way to improve our algorithm in such a situation will be to
incorporate information from other sensors like ultrasonic/infra-red as priors to the MRF
model. Another direction to carry forward this work would be to extend our framework to
forward-looking onboard cameras. Such a setup could enable not only altitude estimation
but also visual navigation and obstacle avoidance. These are topics for future research.
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